Back Pressure Regulators UV 1.5

Valve in Intermediate Flange Design

MANKENBERG

Technical Data

Connection DN Nominal Pressure PN Inlet Pressure K_{vs}-Value Temperature Medium 25, 50 40 1 - 40 bar 10.5 and 19 m³/h -20 up to 80 °C liquids with lubricating property

Description

Self-acting back pressure regulators are simple control valves offering accurate control while being easy to install and maintain. They control the pressure upstream of the valve without requiring pneumatic or electrical control elements.

The back pressure regulator UV 1.5 is a pilot-operated control valve with proportional control mode consisting of main valve and pilot valve. It is completely made of stainless steel with excellent corrosion resistance. Its intermediate flange design with limited size makes the valve extremely lightweight and compact. The valve cone has a metallic seal.

The sturdy valve design and the metallic valve seal do not require any particular filtration of the operating fluid. Thanks to its medium-wetted movable components, the valve is largely maintenance-free. In addition, it can be installed in any desired mounting position.

Special notes:

The seal on the outlet side must not cover the outflow bore of the pilot valve (observe measurement!)

These valves are no shut-off elements ensuring a tight closing of the valve. In accordance with DIN EN 60534-4 and/or ANSI FCI 70-2 they may feature a leakage rate in closed position in compliance with the leakage classes II.

Standard

- » All stainless steel construction
- » FKM elastomers (O-rings)
- » 2014/68/EU Art. 4 Par. 3

Typical Applications

Maintaining the required lub oil pressure for the use of main and auxiliary oil pumps, for ex. compressors, gears, slide bearings, drive shafts etc., Pressure control of fuels / fuel oils in power plants. Control of minimum quantities for centrifugal pumps with oil / oily fluids. Lub oil systems, for ex. for steam and gas turbines, large diesel engines for ship propulsion and cogeneration units (CHP).

Operating instructions, know how and safety instructions must be observed. The pressure has always been indicated as overpressure. We reserve the right to alter technical specifications without notice.

K _{vs} -Values [m³/h]					
nominal diameter	DN 25	DN 50			
m³/h	10,5	19			
Setting Ranges [bar], Nominal Pressure					
Setting Range	1 - 20	12 - 40			
Nominal Pressure	PN 40	PN 40			

Back Pressure Regulators UV 1.5

Valve in Intermediate Flange Design

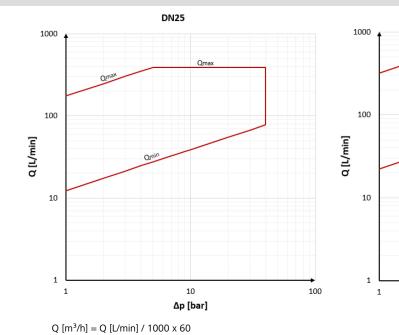
Materials		
Body	stainless steel 1.4404	
Inner Parts	stainless steel 1.4404 / 1.4462 / 1.4301	
O-ring	FKM	
Spring	stainless steel 1.4310	
Screws	stainless steel A4-70	
Dimensions [mm]		

Dim

size	nominal diameter			
	DN 25	DN 50		
А	40	50		
В	75	85		
øD	70	100		
øE	22	35		
øF	49	69		

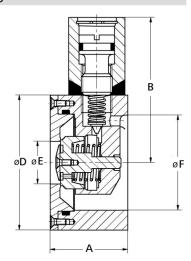
Flanges

r k


nominal diameter DN 25 EN 1092-1 PN 40 DN 25, DN 32, DN 40 | ASME B16.5 Class 300 NPS 1', NPS 1 - 1/2'

nominal diameter DN 50		
EN 1092-1 PN 40 DN 50,	DN 65	
ASME B16.5 Class 300 NPS 2',		
NPS 2 - 1/2'		

1 4 11


Neights [kg]				
nominal diameter	DN 25	DN 50		
(g	1.0	2.4		

Flow Chart

We reserve the right to alter technical specifications without notice.

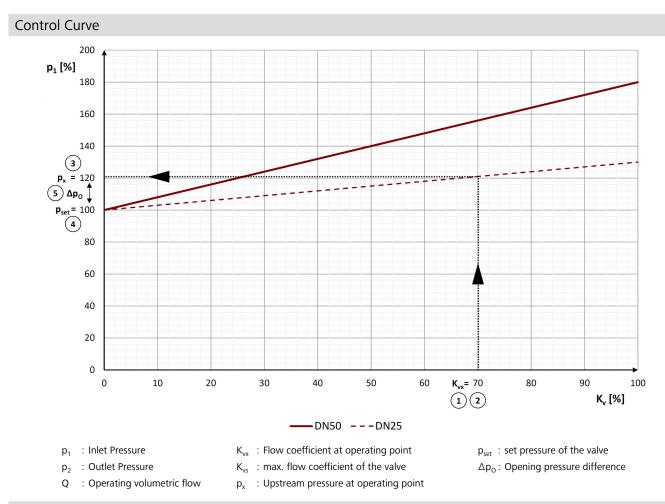
Dimensional Drawing

DN50

Om

Oma

Qmax


10

∆p [bar]

100

Back Pressure Regulators UV 1.5

Valve in Intermediate Flange Design

Example

Determination of the opening pressure difference Delta Δp_0 for UV1.5 DN25

hydraulic oil ISO VG 46, T = 60 °C, Q = 23.6 m³/h, p₁ = 10 barg, p₂= 0 barg, K_{vs} = 10.5 m³/h = 100%

1. K_v = 7.3 m³/h

2. $K_{vx} = K_v / K_{vs} \times 100 \% = 70 \%$

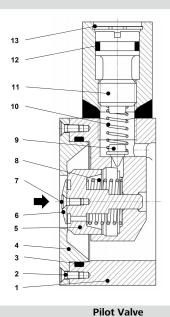
- 3. $p_x = p_1 = 10 \text{ barg} = 120 \%$
- 4. $p_{set} = p_1 / p_x x 100 \% = 10 \text{ barg} / 120 \% x 100 \% = 8.3 \text{ barg}$
- 5. $\Delta p_0 = p_x p_{set} = 10 \text{ barg} 8.3 \text{ barg} = 1,7 \text{ bar} = 20 \%$

The expected pressure drop from the operating point until the valve closes is 1.7 bar.

We reserve the right to alter technical specifications without notice.

Back Pressure Regulators UV 1.5

Valve in Intermediate Flange Design


Function

To control the upstream pressure, the required set pressure at the valve is set at the adjusting screw (11). Use a common slot screwdriver for this purpose. Turning to the right increases the set pressure, turning to the left reduces the set pressure.

The piston chamber is fed via the gap at the baffle plate (6) and the control bore in the piston (5). In closed condition, the closing forces at the piston (5) prevail and keep the valve closed.

Once the pressure in the piston chamber goes beyond the set pressure, the cone (9) is lifted off the seat of the pilot valve against the pressure spring (10). The outflow to the outlet side causes a pressure drop in the piston chamber which lifts the piston (5) off the seat (4) and opens the back pressure regulator. The resulting balance of opening and closing forces keeps the piston (5) in position.

We reserve the right to alter technical specifications without notice.

9 cone

13 circlip

10 pressure spring

11 set screw 12 O-ring

Main Valve

- 1 body
- 2 countersunk head screw
- 3 O-ring
- 4 seat
- 5 piston6 baffle plate
- 7 countersunk head screw
- 8 pressure spring